Inter-integrated circuit (I 2 C) interface
Table 170. SMBus vs. I 2 C (continued)
SMBus
Different address types (reserved, dynamic etc.)
Different bus protocols (quick command, process
call etc.)
RM0008
I 2 C
7-bit, 10-bit and general call slave address
types
No bus protocols
SMBus application usage
With System Management Bus, a device can provide manufacturer information, tell the
system what its model/part number is, save its state for a suspend event, report different
types of errors, accept control parameters, and return its status. SMBus provides a control
bus for system and power management related tasks.
Device identification
Any device that exists on the System Management Bus as a slave has a unique address
called the Slave Address. For the list of reserved slave addresses, refer to the SMBus
specification ver. 2.0 ( http://smbus.org/specs/ ).
Bus protocols
The SMBus specification supports up to 9 bus protocols. For more details of these protocols
and SMBus address types, refer to SMBus specification ver. 2.0 ( http://smbus.org/specs/ ).
These protocols should be implemented by the user software.
Address resolution protocol (ARP)
SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. The Address Resolution Protocol (ARP) has the following
attributes:
Address assignment uses the standard SMBus physical layer arbitration mechanism
Assigned addresses remain constant while device power is applied; address retention
through device power loss is also allowed
No additional SMBus packet overhead is incurred after address assignment. (i.e.
subsequent accesses to assigned slave addresses have the same overhead as
accesses to fixed address devices.)
Any SMBus master can enumerate the bus
Unique device identifier (UDID)
In order to provide a mechanism to isolate each device for the purpose of address
assignment, each device must implement a unique device identifier (UDID).
For the details on 128 bit UDID and more information on ARP, refer to SMBus specification
ver. 2.0 ( http://smbus.org/specs/ ).
SMBus alert mode
SMBus Alert is an optional signal with an interrupt line for devices that want to trade their
ability to master for a pin. SMBALERT is a wired-AND signal just as the SCL and SDA
signals are. SMBALERT is used in conjunction with the SMBus General Call Address.
Messages invoked with the SMBus are 2 bytes long.
636/995
Doc ID 13902 Rev 9
相关PDF资料
MCBTMPM330 BOARD EVAL TOSHIBA TMPM330 SER
MCIMX25WPDKJ KIT DEVELOPMENT WINCE IMX25
MCIMX53-START-R KIT DEVELOPMENT I.MX53
MCM69C432TQ20 IC CAM 1MB 50MHZ 100LQFP
MCP1401T-E/OT IC MOSFET DRVR INV 500MA SOT23-5
MCP1403T-E/MF IC MOSFET DRIVER 4.5A DUAL 8DFN
MCP1406-E/SN IC MOSFET DVR 6A 8SOIC
MCP14628T-E/MF IC MOSFET DVR 2A SYNC BUCK 8-DFN
相关代理商/技术参数
MCBSTM32EXLU 功能描述:开发板和工具包 - ARM EVAL BOARD + ULINK2 FOR STM32F103ZG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32EXLU-ED 制造商:ARM Ltd 功能描述:KEIL STM STM32EXL EVAL BOARD
MCBSTM32EXLUME 功能描述:开发板和工具包 - ARM EVAL BOARD + ULINKME FOR STM32F103ZG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200U 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG + ULINK2 RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200UME 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG ULINK-ME RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200UME-ED 制造商:ARM Ltd 功能描述:KEIL STM32F207IG EVAL BOARD
MCBSTM32F400 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F407IG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V